
~~ 
~ 

NASA Contractor Report 42 17 

Integrated Autopilot/Autothrottle 
for the NASA TSRV B-737 Aircraft: 
Design and Verification by 
Nonlinear Simulation 

Kevin R. Bruce 
Boeing Commercial Airplane Company 
SeattZe, Washington 

Prepared for 
Langley Research Center 
under Contract NAS1-14880 

National Aeronautics 
and Space Administration 

Scientific and Technical 
Information Division 

1989 



TABLE OF CONTENTS 

Page 

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

9.0 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DESIGN AND PERFORMANCE REQUIREMENTS .............................. 

LINEAR DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5.1.1 Configuration 1 .................................................. 
5.1.2 Configuration 2 .................................................. 
5.1.3 Configuration 3 .................................................. 

5.2 Development of Integrated Control Law Configuration ...................... 
5.2.1 Flight Path Inner Control Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.2.2 Inner Speed Control Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.2.3 Flight Path Angle Error Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.2.4 High and Low Pass Filters ......................................... 
5.2.5 Pitch Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.2.6 Outer Loop Gains ................................................. 
5.2.7 Cross Coupling Signal Paths ....................................... 

5.3 Low Speed Configuration ................................................. 
5.4 Wind Shear and Turbulence Performance for Low Speed 

5.5 Inner Loop Design ........................................................ 
Configuration ........................................................... 

DESIGN CONFIGURATION IN NONLINEAR OPERATION ...................... 
6.1 Throttle or EPR Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

6.3 Enginecontrol Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6.2 Angle of Attack Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ADDITIONALCONTROLMODES .............................................. 
7.1 Ground Speed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.2 Mach and CAS Speed Modes .............................................. 
7.3 Glide Slope and Vertical Path Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

MODE CONTROL PANEL ..................................................... 
8.1 Longitudinal Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

8.1.1 Flight Path Angle ................................................ 
8.1.2 Velocity Control Wheel Steering (CWS) ............................. 
8.1.3 Glide Slope (GS) and Vertical Path (V-Path) ......................... 
8.1.4 Altitude ......................................................... 
8.1.5 EPR ............................................................. 

8.2 SpeedModes ............................................................ 

PERFORMANCE ASSESSMENT ............................................... 
9.1 Engine Control Loop ..................................................... 
9.2 Speed and Altitude Modes ................................................ 
9.3 Flight Path Angle. Glide Slope and Vertical Path Modes ..................... 

2 

4 

5 

6 
6 
6 
6 
6 
7 
7 
7 
9 
9 
9 
9 
9 

10 

13 
26 

37 
37 
37 
43 

52 
52 
52 
54 

57 
57 
57 
57 
57 
59 
59 
59 

60 
60 
60 
83 

... 
I11 

PRECEDING PAGE BLANK NOT FILMED 



TABLE OF CONTENTS (Concluded) 

I Page 

9.4 Nonlinear Operation Due to a or Engine Limiting .......................... 83 
9.5 Turbulence and Wind Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90 

10.0 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103 

APPENDIX A . TWO-DIMENSIONAL WIND SHEAR DETECTOR ...................... 105 

APPENDIX B . DERIVATION OF SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110 

iv . .  * 



LIST OF FIGURES 

I 

I 
1 . 
2 . 
3 . 
4 . 
5 . 
6 . 
7 . 
8 . 
9 . 
10 . 
11 . 
12 . 
13 . 
14 . 
15 . 
16 . 
17 . 
18 . 
19 . 
20 . 
21 . 
22 . 
23 . 
24 . 
25 . 
26 . 
27 . 
28 . 
29 . 
30 . 
31 . 
32 . 
33 . 

Page 
Conceptual Design of Integrated AutopilotJAutothrottle ........................... 8 
Cruisc Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

Initial Low Speed Control Law Configuration ..................................... 
100-ft Step .................................................................... 14 

10-kn Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

3" Step in Flight Path Angle .................................................... 15 

Double Maneuver (Conventional Autopilot) ...................................... 15 

Double Maneuver (Integrated System) ........................................... 16 

Baseline Systems for 1 k d s  Horizontal Shear ..................................... 
Integrated System with Complementary V ....................................... 18 

Wind Shear Response with Complementary V .................................... 19 

Integrated System with Complementary Veng .................................... 20 

100 ft Altitude Command ....................................................... 22 

Wind Performance Trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22 

System with Veng and Wind Shear Detector ...................................... 23 

Integrated System with Wind Shear Detector ..................................... 
Wind Performance Trade-off (Wind Shear Detector) .............................. 25 

Control Law with Improved Stability ............................................ 27 

System with h/9 Inner Loop .................................................... 28 

Frequency Response of Inner Loops .............................................. 
System with Complementary 9/9. h/9 Inner Loop .................................. 
Time Response to 100-ft Altitude Command ...................................... 34 

Time Response to 10-kn Speed Command ......................................... 
System with a Inner Loop 
Tecs Linear Crossfeed Model .................................................... 38 

Throttle Limiting - Linear Crossfeed Model ...................................... 39 

Addition of Washout Filter in Crossfeed A ........................................ 40 

Effect of Washout Filter -Throttle Limiting Due to y cmd .......................... 
Throttle Limiting Due to Hcmd 
Instability Due to Alpha Limiting ............................................... 42 

System Configuration Including 0: Outer Loop .................................... 
Effect on Airspeed . a Limiting ................................................. 45 

Plot of a Against Time ......................................................... 45 

12 

16 

24 

... 

29 

33 
. . . .  

34 

36 ...................................................... 

41 

41 .................................................. 

44 

V 



LIST OF FIGURES (Continued) 

34 . 
35 . 
36 . 
37 . 
38 . 
39 . 
40 . 
41 . 
42 . 
43 . 
44 . 
45 . 
46 . 

47 . 
48 . 
49 . 
50 . 
51 . 
52 . 
53 . 
54 . 
55 . 
56 . 
57 . 
58 . 
59 . 
60 . 
61 . 
62 . 
63 . 
64 . 

Page 

Engine Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 

EPR Demand Engine Loop (Linear Design) ....................................... 47 

ACSL Engine Simulation Results ............................................... 49 

Detailed Engine Loop (ASCL Simulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 

Engine Response in Limiting Condition .......................................... 51 

Implementation of Ground Speed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 

Implementation of MacWCAS Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 

Geometry of Glide Slope Engagement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 

Transient Free Switching- Glide Slope Mode ..................................... 55 

Vertical Path Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 

DiagramofModeControlPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

Integrated ElevatorlThrust Control System ...................................... 61 

EngineControl Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 

Integrated AutopilotJAutothrottle System Path and Speed Modes . . . . . . . . . . . . . . . . . . .  63 

Thrust and Elevator Command Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 

Engine Performance (5000 ft. 150 kn. EAS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 

Engine Performance (20000 ft. 310 kn. EASI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 

10-kn Step in VCAs (120 kn. 1500 ft) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

100-ft Step in Height (120 kn. 1500 ft) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 

10-kn Step in VCAs (150 kn. 5000 ft) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 

100-ft Step in Height (150 kn. 5000 ft) ............................................ 71 

Double Maneuver (AVcAs = 10 kn. AH = 100 ft) 

10-kn Step in VCAs (200 kn. 10000 ft) ............................................ 73 

100-ft Step in Height (200 kn. 10000 ft) .......................................... 74 

10-kn Step in VCAs (250 kn. 15000 ft) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
100-ft Step in Height (250 kn. 15000 ft) .......................................... 76 

10-kn Step in VCAs (320 kn. 20000 ft) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77 

100-ft Step in Height (320 kn. 20000 ft) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78 

Double Maneuver (AVcAs = 10 kn. A H = -380 ft) ................................ 
Large Height Change (AH = 1000 ft. 150 kn. 5000 ft) 

Large Velocity Change (20 kn change 150 kn. 5000 ft) 

................................. 72 

75 

79 

81 

82 

.............................. 
............................. 

vi 



LIST OF FIGURES (Concluded) 

65 . 
66 . 
67 . 
68 . 
69 . 
70 . 
71 . 
72 . 
73 . 
74 . 
75 . 
76 . 
77 . 
78 . 
79 . 
80 . 

A.l. 

A.2. 

Page 

Mach to CAS Switch ........................................................... 84 

Altitude Preselect Mode ........................................................ 85 

3" Change in Flight Path Angle (150 kn. 5000 ft) .................................. 86 

3OChange in Flight Path Angle (310 kn. 20. 000) .................................. 87 

Glide Slope Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88 

Vertical Path Mode ............................................................ 89 

Throttle or EPR Limit Operation ................................................ 91 

=Limit Operation .............................................................. 92 

EPR Max Mode ................................................................ 93 

Horizontal Turbulence - SD of Elevator (ogc) Against W .......................... 94 

Horizontal Turbulence - SD of Throttle Against W ............................... 95 

Horizontal Turbulence . SD of Height (OH) Against W 96 

Horizontal Turbulence -Velocity Against W .................................... 97 

............................ 

Horizontal Wind Shear . Velocity (Ve) Against W ............................... 100 

Horizontal Wind Shear . Height Against W .................................... 101 

SD ofThrottle Position Against Velocity Error Wernax) Due to Wind Shear . . . . . . . . . .  102 

Derivationof0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107 
Wind Shear Detector ........................................................... 107 

vii 



LIST OF TABLES 

Page 
1 . RMS Values for Dryden Spectrum Input ......................................... 17 

2 . 
3 . 

Effect of Varying the Complementary Filter Time Constant (T) for V,. y System . . . . . .  
RMS Effect of Turbulence (for 1 fps rms Dryden Wind) 

4 . Effect of Vertical'I'urbulencc ( 1  fps rms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 

21 

35 ............................. 

ix 
PREHDING PAGE EKANR NOT FILMED 



1.0 SUMMARY 

An integrate autopilotJautothrottle has been developed for implementation on the NASA TSRV B737 

airplane. The system was designed using a 'total energy concept'. Certain maneuvers require a net 

energy change (e.g., an  increase in velocity or height) which can be obtained using the throttle. In gusty 

conditions, the system may only require a redistribution of energy obtained from using the elevator. 

The system is intended to achieve: 

(1) Fuel efficiency by minimizing throttle activity 

(2) Low development and implementation costs by designing the control modes around a fixed 

inner loop design. 

(3) Maximum safety by preventing stall and engine overboost. 

The control law was designed initially using linear analysis techniques and developed using a simplified 

nonlinear simulation. The system satisfied the design requirements for stability and cross coupling errors 

during maneuvers. The wind shear criterion ( < 5  kt  vel error) was satisfied during approach while 

throttle activity was minimized in cruise. 

The control law was developed to include additional control modes (e.g., glide slope capture) and modelled 

on a nonlinear aircraft simulator (i.e., Harris simulator) to confirm the original design results and 

validate the system for additional flight conditions. 
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2.0 INTRODUCTION 

A new airplane control system must demonstrate more than just good dynamic response to be seriously 

considered as a replacement for existing systems. In the last decade the dramatic increase in the price of 

oil, cost of manpower, and amount of air traffic have meant additional constraints on developing a new 

system. The result of these constraints is that a new system must be designed for: 

(1) Fuel Efficiency 

(2) 

(3) Maximum Safety 

Minimum Development, Implementation and Certification Costs 

The integrated autopilotiautothrottle has been designed with these constraints in mind. To maximize 

fuel efficiency the integrated autopilotlautothrottle has been designed using the concept of a ‘total energy 

control’. 

Consider an airplane flying a t  some datum condition with an energy level consisting of the sum of the 

kinetic energy (KE) and potential energy (PE), where the KE is associated with speed and the PE with 

altitude. In such a condition certain maneuvers may require a net energy change (e.g., a n  increase in 

velocity or height) which can be achieved by control of thrust using the throttle. In gusty conditions or 

during the execution of a double maneuver (i.e., decrease in height coupled with increase in velocity) the 

net energy change may be small, but the system will require a redistribution of energy which the elevator 

provides via redistributing energy by trading KE for PE or vice versa. 

This concept produces a ‘coordinated’ response (i.e., the throttle and elevator working in unison to the 

command inputs or disturbance), whereas in conventional autopilots and autothrottles (Le., in which the 

elevator controls height and the throttle speed) the system can produce an ‘uncoordinated’ response 

requiring excessive throttle motion. 

This system has been designed with a constraint of minimum complexity to lower costs, and thereby 

reduce software development and verification compared with a conventional system. In achieving this 

aim, the system has been developed around a generalized inner loop fixed for all control modes, and a n  

outer loop reconfigured for each required control mode. Furthermore, to maximize safety, the engine 

controller has been designed to include EPR limit protection, while the system incorporates angle of 

attack limit protection. 

2 



This report documents the development of the integrated autopilotlautothrottle and includes: 

(1) Linear Design of the System 

(2) Development of Additional Features to Improve Performance in Nonlinear and Limiting 

Conditions 

(3) Design of the Engine Controller 

(4) Performance Evaluation of the System Using the Harris Nonlinear Flight Simulator. 

Detailed system diagrams are included herein to facilitate system software specifications and future 

flight test of the system. 

3 



3.0 NOMENCLATURE 

AZCG 
DEC 
ELEV 
EPRcmd 
EPRmin 
ET 
ET, 
h 
h 
ii 
hbaro 
pcmd 

KEPRP 
KEFB 

Kh 
Ka 

KV 

p ,  p, 

v~~~ 
v ug 

'CAS 
'e 
Vemax 
v c  
?ng ~ V T  

T ~ C M  

w , w o  

svT 

TAUT0 

wg a 

Y 
YE 
6c  
%.HR 
e. e 
TK 
O K  

5 
0 

AT 
AY 

Longitudinal acceleration (through center of gravity) 
Elevator command 
Elevator deflection 
Commanded Engine Pressure Ratio (EPR) 
Minimum EPR 
Total Energy Controller Error 
Total Energy Controller 
Height 
Height rate 
Height acceleration 
Barometric height 
Height command 
Inertial height rate 
Engine controller forward path gain 
Engine controller feedback gain 
Velocity error gain 
Height error gain 
Error gain 
Current pressure, pressure a t  sea level 
Longitudinal gust velocity 
Flight path acceleration 
Air referenced velocity rate 
Calibrated Air Speed (CAS) 
Equivalent Air Speed (EAS) 
Maximum EAS 
Velocity ratelacceleration error 
Thrust derived velocity rate 
Inertially referenced velocity rate 
True Airspeed (TAS) 
Throttle command 
Throttle level angle 
Weight, weight a t  sea level 
Vertical Gust Velocity 
Angle of attack 
Flight path angle 
Flight path angle error 
Elevator deflection 
Change in Thrust 
Airplane body angle, body rate 
Complementary filter time constant 
Complementary filter bandwidth 
Natural frequency 
Damping ratio 
Thrust change 
Flight path angle change 
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4.0 DESIGN AND PERFORMANCE REQUIREMENTS 

The following design and performance requirements were imposed on the design to assure satisfactory 

performance of the final control law: 

All vertical control modes should be integrated into a single control law concept. The 

system should be designed around a fixed inner loop configuration with outer loop control 

modes generating control signals that arc compatible with the inner loop command 

inputs. 

Cross coupling control errors should be minimized and the system should give a balanced 

performance over all flight conditions. The maximum velocity error should be less than 

1 kn for path control, while the maximum height error should be less than 20 ft for speed 

control. 

There should be no overshoot of response for step command inputs. The damping ratio of 

dominant poles should be greater than 0.7. 

Tight speed control is required in conditions of wind shear (max speed error < 5 kn). This 

criterion is considered vital at low speed and altitude conditions. 

Throttle activity should be minimized particularly in cruise conditions. However, during 

approach when wind shear becomes a dominant consideration, the requirement to 

minimize throttle activity becomes a secondary consideration. 

The design should incorporate safeguards to prevent stall and overboost of the engine. 

5 



5.0 LINEAR DESIGN 

5.1 INTRODUCTION 

The concept of'total energy control' evolved during the evaluation of two preliminary control law 

schemes. The basic configurations and reasons for rejection of these configurations are presented here. 

5.1.1 Configuration 1 

Configuration 1 w a s  concerned with integral control of speed through the throttle with proportional and 

rate control of speed plus integral control of altitude through the elevator. This system was found to 

require substantial modification to achieve system stability. In addition, performance characteristics 

were found not to be good. 

5.1.2 Configuration 2 

Configuration 2 was concerned with integral control of speed through the throttle and integral control of 

altitude through the elevator with proportional and rate control of speed and altitude through the throttle 

and elevator. After some modification from the original concept, this design yielded good performance in 

turbulence, despite that the cross coupling and windshear performance were poor. 

Nevertheless, Configurations 1 and 2 did not lend themselves to the single basic control law concept and 

required considerable software to provide all the additional control modes needed in a practical autopilot 

design. Therefore, a third control configuration was  developed. 

5.1.3 Configuration 3 

Configuration 3 was concerned with integral control of altitude through the throttle and integral control 

of speed through the elevator with proportional and rate control of speed and altitude through the throttle 

and elevator. 

This third concept was similar to the technique used by pilots, whereby thrust is trimmed to attain the 

desired flight path while elevator control is used to stabilize the aircraft and maintain speed. In addition, 

during operation on the back side of the power curve, this technique is essential because flight path 

response to elevator is unstable for constant thrust while the relationships: 
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and constant - - 
T 

remain consistent. 

5.2 DEVELOPMENT O F  INTEGRATED CONTROL LAW CONFIGURATION 

The system shown in Figure 1 represents the original conceptual design which incorporated design 

features and characteristics identified during the previous autothrottle/autopilot improvement studies. 

These characteristics are described in the following paragraphs. 

5.2.1 Flight Pa th  I n n e r  Control Loop 

The flight path inner control loop uses flight path error (yc) to derive the throttle command signal as 

flight path angle is directly related to thrust: 

AT = gAy 

Altitude and altitude rate control modes are simply outer control loops which generate a yCMD signal to 

drive the inner loop. 

5.2.2 Inne r  Speed Control Loop 

The inner speed control loop uses flight path acceleration, which is again related to specific thrust: 

True airspeed control forms the outer loop to the flight path acceleration loop. The flight path 

acceleration command is formed by multiplying airspeed error by the outer loop gain. As with the flight 

path loop, additional airspeed related control modes can simply be added to the front end of the airspeed 

control mode. For example, Mach control can be provided by simply converting the change in Mach 

command to a change in true airspeed. 
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5.2.3 Flight Path Angle Er ro r  Signal 

1 

The key design feature is the calculation of the potential flight path angle error signal y,. This signal 

may be considered as  the energy that must be added to the system in order to restore the nominal height 

and airspeed (e.g., in response to a wind gust). The signal is shaped through a high pass filter and used 

for short term control of both the elevator and thrust. In constant energy airplane dynamics (e.g., 

phugoid type motion) the potential flight path angle error signal (y,) would be zero. 

5.2.4 High a n d  Low Pass Filters 

For large term control, the high and low pass filter yield a unity transfer function for yE, which is then 

integrated to develop the trimmed throttle position. Similarly, in the elevator path, the filters give a 

unity transfer function to Ve, which is then integrated to develop the trimmed elevator position. 

5.2.5 Pitch Stability 

Short term pitch stability is provided by a conventional 010 inner loop. 

5.2.6 Outer  Loop Gains 

The outer loop gains of altitude and speed are selected to provide a good stability and transient response. 

Further, for speed control, the ratio of airspeed error gain and inertial acceleration gain is selected to 

achieve maximum cancellation of turbulence induced signal components. 

5.2.7 Cross Coupling Signal Paths 

The cross coupling signal paths are the same for all control modes in order to achieve consistent control 

decoupling for each mode. 

A stability analysis of this system showed that the system was unstable due to the sign of 6e/Ay. The sign 

must be negative for short term control, but positive for steady state condition. Therefore, the short term 

elevator and throttle command processing require separate yc and Vc signal inputs. Crossfeed signals 

summed downstream of integrators would serve for short term control. 



This concept was developed so that the throttle could be used as a n  energy controller where: 

In addition, it was considered practical to use V, and ye to develop the short and long term elevator 

command. When the total energy error is zero (i.e., the acceleration error V, is equal to -gy, ), the signal 

inputs(VC and -gy,) are equivalent and contribute equally to the elevator command. 

This reconfigured system was optimized for high speed (i.e., cruise configuration) as shown in Figure 2. 

The proportional total energy signal to the throttle has been discarded because a stability analysis 

indicated that this signal was not required for adequate stability. 

The stability characteristics were: 

6.7 .998 

6.16 .719 

.097 .888 

5.3 LOW SPEED CONFIGURATION 

The gains derived for the cruise configuration resulted in a slow transient response to command signals 

a t  low speed. Root locus analysis techniques were used to obtain an improved response. Figure 3 shows 

the resulting configuration and gain values. The primary modifications were: 

(1) Increased system bandwidth by increasing gains Kh and K,. 

(2) Increased inner loop gains for improved stability. 

(3) Change in KDEI, KUD, and KHD gain values to improve cross coupling errors. 
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The stability characteristics of the system were: 

.439 3.91 

.743 .285 

.969 .116 

Typical transient responses are  shown in Figure 4 for a 100-ft step, Figure 5 for a 10-kn step, and Figure 6 

for a 3" step in flight path angle. 

The double maneuver is of particular interest in examining the performance of the integrated elevator 

and throttle control law. Figure 7 shows the time response of a conventional autopilot (in altitude hold 

mode) and autothrottle for a simultaneous commanded 10 kn increase in airspeed and 105 ft decrease in 

altitude. In this maneuver the throttle moved forward 6" to null the speed error, causing a slow response 

with overshoot. The same maneuver for the integrated system (fig. 3), shown in Figure 8, gave a 

smoother response with no altitude or airspeed overshoot. With this maneuver the throttle settled 

quickly after an excursion of only 2". 

5.4 WIND SPEED AND TURBULENCE PERFORMANCE 

FOR LOW SPEED CONFIGURATION 

The performance of the baseline integrated autopilotJautothrottle in turbulent conditions is shown in 

Table 1 for 1 fps rms longitudinal and vertical gusts. For comparison purposes, the results obtained for 

the TCV glide slope track law and autothrottle are  also presented. It can be seen that the baseline system 

has worse path tracking and elevator activity, although airspeed tracking is better particularly in 

vertical turbulence. The performance of this system in wind shear ( 1 k d s  horizontal shear) is shown in 

Figure 9. The 1 O : l  ratio of inertial acceleration to airspeed causes a 10 kn steady state airspeed error. 

Three design modifications were evaluated to improve this performance: 

(1) Complementary InertiaVAirmass referenced acceleration 

(2) Complementary Airmassfl'hrust derived acceleration 

(3) Adding a two-dimensional wind stress detector 

13 
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NOISE 
INPUT OUTPUT 

B 
U 

BASELINE VI/VAIR VT,Y 
SYSTEM 7;=20s T = 20s 

E 
W 

VT,y+WSD 
T= 15s 

~ ~~ ~~ 

Table 1. RMS Values for Dryden Spectrum Input 

TCV 
GLIDE SCOPE* 
TRACK + A/T 

'e 
H 

%HR 

6e 

'e 

H 

%HR 

6e 

.9831 1.013 .9931 

.6490 1.065 1.0726 

.4184 .6383 .6367 

.3662 .1357 .3319 

.1647 .1574 3485 

1.9151 1.973 .9535 

3089 3082 .5224 

.7056 .6966 .2406 

.9876 

1.1826 

.9380 

.7410 

1.025 

.4181 

.4047 

.1672 

.4973 

1.043 

.6703 

.2282 

.4486 

.7916 

.7795 

.3116 

* No wind shear detector 

The steady state error due to wind shear can be eliminated by the addition of a complementary filter 

using true airspeed (figs. 10 and 11). Inertial acceleration is filtered through a high pass filter and 

complemented with a lagged airspeed rate. However, this improvement in wind shear performance is 

achieved at the expense of throttle activity (Table 1). 

An alternative method of obtaining acceleration was considered to determine whether throttle activity 

could be reduced. This method consisted of deriving an equivalent acceleration signal from engine thrust 

(EPR) and flight path angle feedback. 

The equivalent acceleration signal was approximated by: 

Drag effects have been neglected. The thrust can be derived from EPR or engine speed (N,) and flight 

path angle can be derived by: 

Y = -  it 
vg 

The acceleration signal VT,y was then used in an  identical manner to V, (i.e., complemented with VAir 1 
as shown in Figure 12. 
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The overall system stability was decreased by using V,,y, compared with V, . The effect of this reduced 

stability can be seen in Figure 13, which shows nearly twice the error of the baseline system (fig. 4) for a 

100-ft step in altitude. Table 2 shows the effect on damping characteristics of varying the V,,y, system 

complementary filter time constant. 

7; = 10 

5 0 

.353 1.82 

.689 .212 

Table 2. Effect of Varying the Complementary Filter Time 
Constant (T) for V,,y System 

7; = 20 T = 30 

5 0 5 0 

:359 1.84 .361 1.84 

.724 .208 .737 .207 

The wind shear performance of this system is compared with the performance obtained with the VI/VAIR 

system in Figure 14. 

Figure 14 shows the effect on rms throttle activity and velocity error due to wind shear of varying the 

complementary filter time constant (T), for both of the systems previously discussed. It can be seen that 

these two systems are almost identical. 

The overall performance of the different control laws is shown in Table 1. The significant difference in 

performance is the effect of vertical turbulence where noise levels on height, throttle and elevator are  

significantly reduced, although velocity error increases by 250%. 

A wind shear detector (WSD) was incorporated with the design (figs. 15 and 16) to complete the analysis 

of wind shear and turbulence. The purpose of this design is to command a new thrust level to offset 

accelerations due to wind. The details of the design are given in Appendix A. 

The rms results (shown in Table 1) for the system with WSD are very similar except for increased throttle 

and elevator activity due to vertical turbulence. However, these results were calculated for a different 

time constant (T). Plotting rms throttle against wind shear for both system shows the characteristic is 

essentially the same, although for a different value of time constant (i.e., the second system with T = 10 

gives similar results to the third system with T = 30). (See fig. 17.) 
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5.5 INNER LOOP DESIGN 

Though consideration has been given to the performance of this system in wind shear and turbulence, it 

was not considered optimum in terms of stability or path tracking capability. Hence, further root locus 

analysis was carried out to improve stability with the resultant gain configuration presented in Figure 18 

along with the bandwidth and damping of the dominant modes. The performance of this system in 

turbulence was compared with the previous system and found to have lower elevator activity due to the 

lower gain in the proportional h and h paths. However, the revised system gave poorer altitude tracking. 

Previous research work on TSRV autoland flare control laws had established that h feedback in the inner 

elevator control loop exhibited better path tracking than the conventional 0/0 systems. Therefore, an h/0 

system was derived (see Appendix B). The h/0 system is shown in Figure 19 together with the damping 

and bandwidth of the dominant modes. Altitude and airspeed decoupling were not significantly affected 

by the different inner loop, although wind shear performance was improved slightly (0.7kn for 1 kn/s wind 

shear input). Table 3 shows the effect of turbulence (for 1 fps rms input). The h/0 showed improved height 

tracking compared with the 010 loop, although this was achieved a t  the expense of elevator activity, with 

throttle activity not being significantly affected. 

The performance of the inner loops were compared in the frequency domain (fig. 20a-h). The h/0 system 

showed better low frequency performance for altitude tracking but worse high frequency elevator 

response. In order to take advantage of the preferred characteristics of each system, the two inner lpop 

techniques were combined through a complementary filter. The low frequency component of the h/0 loop 

was combined with the 0/0 high frequency component to achieve the complementation. This was an 

approximate complementation since some of the less significant outer loop terms were omitted to give a 

system consistent with the total energy control law concept. The system diagram and stability 

characteristics are  shown in Figure 21. Figures 22 and 23 show the time response of the system to a 100-ft 

altitude command and 10-kn speed command respectively. The altitude and speed decoupling were 

excellent in both cases. In addition, elevator activity had been significantly reduced (e.g., 31' rms to .16' 

rms for vertical turbulence of 1 kn/s rms) without penalizing velocity or path tracking. 

The final inner loop considered for implementation was an angle of attack inner loop. The motivation for 

considering this design was the possibility of providing a simple and effective angle of attack limiting 

capability . 
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Table 3. RMS Turbulence Levels (for 1 fps rms Dryden Winds) 

TRANSFER 
INPUT 

FUNCTION 
OUTPUT 

Ve 

H 

GTHR 

GELEV 

vt? 
H 

GTHR 

~ E L E V  

ere 
(a  AIR) 

.9663 

1.493 

0.6344 

0.1965 

0.5038 

1.3974 

0.5312 

.0972 

1.013 

1.063 

.633 

.2143 

.7199 

.6587 

.5121 

.SO84 

COMPLEMENTARY 
FI-LTER 

m e  

.9999 

1.0262 

.6362 

.1787 

.6139 

.6394 

.5174 

.1597 

a AIR 

.9663 

1.494 

.6344 

.1965 

.5610 

.9031 

.5154 

.7964 

The total energy control system has a proportional flight path angle signal to the elevator, and is easily 

converted to a n  angle of attack inner loop. The practicality of this depends on the feasibility of accurately 

measuring the angle of attack. The conversion of the 0: inner loop can be accomplished by substituting 8 

= y + 0: for 8 in the inner loop of the 0/8 system, 8 = 57.3 A+ a and for small angles. This system 
is shown in Figure-24. " G  

The two formulations for angle of attack (Le., inertial referenced =(aIN) and air referenced =(aArR)) 

were investigated for the analysis. In the linear analysis, the low frequency signal (aIN) was not directly 

affected by longitudinal gust. In addition, the CLAIR was linearized in such a manner that it was 

dependent only on vertical gusts. 

The stability characteristics (for both aIN and aAIR) are the same as that of original 0/8 system, except 

for the vertical turbulence results for the air system were different to the W8. The aIN system results 

were identical with the 0/8 system. These results show that a aAIR feedback system improves path 

tracking but at the expense of elevator activity. Elevator activity increased to 0.79" rms for the 

system compared with 0.097' rms for the aIN system. 

Although the he inner loop offered the best overall performance (i.e., low throttle activity with minimum 

elevator activity) it was decided to proceed with the 0: inner loop. The primary criterion for this decision 

being the possibility of providing a simple, effective 0: limiting capability. This concept is reported in the 

Section 6. 
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L , 
6.0 DESIGN CONFIGURATION IN NON LINEAR OPERATION 

I 

In a situation which demands a large decrease in velocity, the angle of attack can reach unacceptable 

values and must be limited to prevent stall. Similarly, in response to a command for a large increase in 

flight path angle, the throttle or EPR can limit. In orderto cope with these situations, it was necessary to 

modify the linear design. 

6.1 THROTTLE OR EPR LIMITING 

The command cannot be satisfied when the throttle or EPR reaches its limit in response to a large flight 
1~iiL1i aiiglc 1y J C ~ I I I I I I L I I I ~ .  Ilccausc ul'llrc ciud'cctl A (I'ig. UJ, Llrc ~ I ' I ' O I '  I I I  lligl~l, 1 ~ 1 1 1  illlglc is licd LO l l w  

inner elevator loop causing a bias signal in speed control. Figure 26 shows the result of a 10" flight path 

command from the trimmed condition. In this case, the throttle limited and only achieved about 6". The 

bias signal (yCMD - y) was fed to the elevator inner loop and acted as  a Vcmd signal causing an  increasing 

error in airspeed. 

The obvious solution to prevent the problem of bias in speed for throttle limiting was to cut crossfeed A. 

However, simply switching out the crossfeed caused undesirable transients. Therefore a high pass filter 

(washout filter) was added (fig. 27) to eliminate these transients. The action of the filter can be seen in a 

demand in flight path angle (fig. 28). Whenever the throttle limited, switch 1 closed and the crossfeed 

signal tended to zero. In situations when the throttle came off the limit, switch 1 opened and the system 

returned to linear operation without severe transients (fig. 29). 

r 

6.2 ANGLE OF ATTACK LIMITING 

There was a requirement to restrict angle of attack to a suitable small angle to prevent stall. One 

solution was to limit the inner loop command. However, i t  was found that in response to a large step 

decrease in velocity, the maximum angle of attack limit was reached but the speed command was not 

satisfied. Consequently, a bias was supplied to the engine via crossfeed B (fig. 25) which prevented the 

control of flight path angle. 

The simple solution used in paragraph 6.1 cannot be applied to the case of limiting. Simply switching out 

the crossfeed B resulted in a system where altitude is controlled with thrust. This system was unstable 

with the configuration shown in Figure 25 for realistic values of gain KH. Figure 30 shows the effect on 

airspeed of switching out crossfeed B and holding the system a t  an a limit of 4". 
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The problem was solved by switching the outer control loop, when limiting occurs, from speed control to 0: 

control. Figure 31 shows the control configuration. When signal A was greater than B, the system 

switched in a transient free manner and the outer loop became an  a control system. 

Where 

Rate of change of V - -  - dV 
d a  W.R.T.a 

This ensured that the velocity and 0: loops would produce an equivalent inner loop signal. 

Figures 32 and 33 show the results achieved using the nonlinear system. For a 20-kn decrease in true 

airspeed from 120 k n  (fig. 321, the system limits a t  4" (fig. 331, and a steady state error of 4 k n  remains in 

airspeed. 

6.3 ENGINE CONTROL LOOP 

A control system was developed to satisfy the thrust response requirements of the autothrottle functions. 

This system incorporated a proportional feedback control loop designed to improve the dynamic and 

steady state performance of the 737 engine. In addition, EPR and throttle limiting circuitry was added. 

A simplified block diagram of the control system is shown in Figure 34. 

The JT8D-9 turbofan provided the basic engine for the simulation. The model was adapted from the 737- 

200 model available on the Harris Flight Simulator (Reference 1) and developed into an ACSL 
simulation. 

The input to the engine model was throttle lever angle. The throttle was driven by a servomotor modelled 

by a lag having a time constant (t,) of 0.15s and rate limit of 10°/s. In addition, hysteresis was added to 

simulate cable backlash in the linkage. The magnitude of the hysteresis was obtained from Reference 2. 

The proportional feedback control loop was designed using a linear engine model consisting of a gain and 

a simple l a g t e  = 1s. Figure 35 shows that the control loop consisted of a second order system comprising 

of engine model and throttle servo. Assuming that the steady state gain should be unity and a damping 

ratio (<) of 1, then values were calculated for KEPRP (112.5) and KFB (.55). 
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The simulation results obtained using these gain values are shown in Figure 36 for the initial conditions 

Of: 

Alt = 20000ft 

Mach = 0.69 

EPRIc= 1.55 

The commanLdd change in EPR is 0.5. Owing to backlash (of 2.171, the actual EPR star -2d below the 

commanded level. It can be seen that the rate limit within the throttle of 10°/s greatly modified the input 

command to the engine (TAUTO) when compared with throttle command (THR CMD). The purpose of 

the engine control loop is to provide the required thrust in response to the outer loop command signal. 

However, it is not possible to feedback thrust measurements and EPR feedback (normally employed with 

Pratt and Whitney engines). A linear relationship between EPR and thrust exists provided atmospheric 

conditions remain constant. Nevertheless, variation in altitude will change this relationship. In this 

system an attempt has been made to correct this change by modifying the outer loop command via 6 (ratio 

of P/Po). Furthermore, during flight the aircraft weight will decrease due to fuel consumption modifying 

the required thrust command. Figure 34 shows a time varying gain (W/Wo) has been introduced to 

compensate the EPR command for weight variation. 

Two important features of the overall engine control systems are the throttle limit and EPR limit 

feedbacks (fig. 37). If either the EPR command or throttle command exceed the 737 engine limits, then a 

scaled signal is fed back to reduce the integrator input and prevent further saturation of the integrator. 

The action of the limits is demonstrated in Figure 38 for a step change in engine outerloop command (not 

shown in Figure 38). The output of the integrator (ICTI) ramps up until the throttle limit is reached (65"), 

at which point a signal (DELTA) is fed back to reduce the integrator input. It can be seen that the throttle 

command (THCM) and throttle output (TAUTO) are held a t  the 65" limit. 
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7.0 ADDITIONAL CONTROL MODES 

The integrated autopilotJautothrottle design, discussed in previous sections, was configured to control 

height (h), true airspeed (VTAS) and flight path angle (FPA, Y). However, the basic design philosophy was 

such that the inner loops are driven by FPA error (y,) and longitudinal acceleration ( V 1. It is therefore 

relatively simple to incorporate additional control modes by designing these modes to generate the 

appropriate yE and V signals. , 
I 7.1 GROUND SPEED MODE 

Control of ground speed was the simplest additional mode to implement. Implementation consisted of 

providing a ground spccd command, and fccdhack of ground specd V,: and ground spccd ratc V,: in placc 

of h c  true air speed signals (lig. 39). 

7.2 MACH AND CAS SPEED MODES 

The Mach and CAS speed control modes are required to facilitate profile descent procedures. One 
I preferred procedure is to descend at constant Mach to some preselected altitude at which point switch to 

descend a t  constant CAS. Conversely, during ascent one procedure is to fly at constant CAS then switch 

to constant Mach. 

The means of implementing the MacWCAS control loop (fig. 40) is documented in Reference 3. This 

implementation consists of converting the MACH or CAS signal to a TAS signal which drives the velocity 

control loop. 

In the case of the Mach control law, the Mach command signal is converted to VTCMD by computing the 

current speed of sound and using this as the conversion factor. In the case of CAS, the VCAs error signal 

is formed prior to converting to VTAS. This technique allows an  approximate conversion factor (derived 

from speed conversion tables) to be used (i.e., VCAs = V, (1 - .12 x 10-4h). 

It can be seen that as V,, is controlled to zero VCASE must go to zero, and that an  exact measurement of 

height is not critical to accurately controlling VCAS, During the first portion of descent, the control 

system is designed to hold the airplane at constant Mach. When CAS equals a preselected CAS, then the 

system automatically switches to CAS hold and continues the descent by maintaining constant LAS. On 

ascent the reverse is true. 
~ 
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7.3 GLIDE SLOPE AND VERTICAL PATH MODES 

An additional control loop has been added to the basic configuration to allow a transient free captive 

exponential of the glide slope during landing approach. Figure 41 shows the geometry of the engagement. 

The airplane is approaching from beneath the glide slope a t  a current height error he(ft) off the glide 

slope. An exponential capture law dictates that the airplane follow a trajectory defined by 

hderived = K h  he 

Wl1Cl.C 

hderived = 1; with respect to glide slope 

This law was accomplished by forming an hderived signal by complementing the low frequency component 

of he rate with the high frequency component of h, using the appropriate filtering (fig. 42). For a n  he that 

is positive and decreasing (Le., the airplane is approaching beneath the glide slope), the error rate hderived 

measured with respect to the glide slope is positive (fig. 42). The effect of this signal is that the output of 

glide slope mode (y,) is ‘biased’ such that it changes sign and commands a negative flight path angle prior 

to the glide slope. Obviously the distance he a t  which V change sign is a function of h derived and forward 

gain (for constant airspeed) as given by the previous equation: 

derived - h - 
K 

D X hderived 

Kh  

Therefore engagement of glide slope mode will occur earlier for high h derived or low K,. 

Vertical path mode has been designed to function in a similar manner to glide slope (fig. 43), however, the 

control input is generated by the flight control computer in the form of a desired height profile. 

Additional software has been added so that several vertical paths can be flown consecutively with 

transient free switching being achieved between each leg. 
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8.0 MODE CONTROL PANEL 

In addition to developing the integrated autopilotlautothrottle algorithm, consideration has been given to 

the hardware necessary for a pilot to select the various autopilot modes and the software necessary to 

control the arming, engagement and switching between the various modes of operation. Figure 44 shows 

the mode control panel designed for the system. 

Figure 44 shows that the panel is split into four sections: longitudinal modes, lateral modes, speed modes 

and system status. At present the lateral modes (i.e., longitudinal V-CWS) and PROFL (speed profile) 

modes have not been designed. However, both are  intended to be included a t  a future date. Pushing the 

appropriate mode control button changes or arms the modes. A longitudinal mode must be selected in 

addition to a speed mode. Engagement of a mode causes the corresponding mode button to light up green, 

whereas arming a mode causes automatic engagement to occur once certain criteria have been satisfied. 

In this case the mode control button lights up amber when armed and turns green when engagement 

occurs. The operation of the individual control modes is discussed in the following paragraphs. 

8.1 LONGITUDINAL MODES 

8.1.1 Flight Path Angle 

The flight path angle control mode is engaged without prior arming. (Engagement causes tracking of 

commanded FPA.) When disengaged, the FPA display shows actual FPA. However, when engaged the 
uclt l l i l  Ia'l'A i:i L i ~ l t c t l  Lo I N  Ll~c coIlIIIlii11d i i l I ( l  IJtc c1i:ipIuy. 011c(: u ~ l g c ~ g c ~ l ,  L I I ~  C O I I I I I I I I I I ~  el111 I J O  djii:ili:cl 

using the adjust knob. 

8.1.2 Velocity Control Wheel Steering (CWS) 

Velocity CWS is a computer augmented manual control mode in which the rate of change of commanded 

FPA is proportional to control column deflection. The mode is engaged directly and is compatible with 

any of the speed modes. 

8.1.3 Glide Slope (GS) a n d  Vertical Pa th  (V-Path) 

GS mode is armed by pushing the GS mode button with engagement occurring automatically as described 

in paragraph 7.3. The mode will not arm without detection of a valid GS signal. V-PATH mode operates 

in a similar manner to GS. However, in this case, the mode will not arm unless a vertical path is stored in 

the flight control computer. 
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I 8.1.4 Altitude 

The altitude hold mode can either be engaged directly or armed by preselecting a desired altitude. When 

the mode is not engaged or armed the display shows the current altitude in feet. Engagement causes the 

actual altitude to be fixed on the display and to be taken as the command signal. The display can be 

altered using the altitude adjust knob. 

The adjust knob can also be used to establish the altitude preselect mode by dialing the adjust knob when 

the mode is disengaged. This causes the existing altitude a t  the time of knob rotation to be stored in 

memory. The altitude increments are added to the stored altitude to hold the new preselected altitude. 

The mode is then armed and will automatically engage when the capture criterion is satisfied. 

8.1.5 EPR 

The EPR mode causes the system to command maximum safe thrust setting while holding speed. This 

mode can be engaged directly. Selection of another flight path mode while the EPR mode is engaged 

causes the EPR mode to disengage and the selected FP  mode to engage. An additional pushing of the EPR 

button following engagement, will cause the EPR mode to disengage and the FP mode to engage. 

8.2 SPEED MODES 

The speed control options on the mode control panel (fig. 44) are: CAS, MACH and PROFL. A speed mode 

will always operate in conjunction with a longitudinal mode with the default mode being CAS. 

Switchover between CAS and MACH is designed to occur automatically at certain flight conditions, but 

may be overridden by pushing the desired mode switch. 

The display shows either the commanded CAS or MACH number (dependingon mode selected) which is 

equal to the actual speed at the time of engagement. 

The command can be changed by rotating the adjustment knobs. Changing between CAS and MACH 

causes the equivalent speed command to be displayed, preventing transients on switchover. 

The speed profile mode (PROFL) can be armed by pushing the PROFL button. Engagement occurs 

automatically once the desired criteria are satisfied. For the mode to arm, a speed profile must be stored 

in the flight control computer. 
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9.0 PERFORMANCE ASSESSMENT 

The control law algorithm was implemented on the Harris non-linear airplane simulator to demonstrate 

the overall system concept and evaluate the performance using a more complex non-linear simulation. 

The implemented system is shown in Figures 45-48 with Figure 45 showing a simplified block diagram of 

the total system and Figures 46-48 showing the detailed system. 

9.1 ENGINE CONTROL LOOP 

Comparison runs were made with the Harris simulator to confirm that the ACSL simulation (paragraph 

6.31, had yielded a realistic engine response. These were made a t  two aerodynamic conditions (figs. 49 

and 50): (1) altitude = 5000 ft, equivalent air speed = 150 kn, and (2) altitude = 20000 ft, equivalent air 

speed = 310 kn. 

Gains predicted by linear analysis resulted in an underdamped response with excessive throttle 

excursion, and consequently, the forward and feedback gains (fig. 46) were reduced to KEPRP = 75 and 

KEFB = 0.3. The effect of reducing the system gain did not significantly effect the response time of the 

engine to the step input ( DEPRO = 0.5). The command signal (DEPRO, fig. 49) is defined as: 

EPRcmd - EPRmin 
where EPRmin = 0.99 

Hence, the output EPR changes from 1.4 to 1.9 for a command from 0.4 to 0.9. Figure 49 also shows the 

throttle command (THCM) and throttle (TAUTO). I t  can be seen that a dominant feature of the transient 

response is the rate limiting of the throttle (10%). Figure 50 shows a 0.5 change in EPR from a n  initial 

value of 1.55 a t  the cruise condition. 

9.2 SPEED AND ALTITUDE MODES 

The primary operating mode of the system is in altitude and speed hold modes. To demonstrate the 

system performance with these modes engaged, the response to speed and altitude steps was recorded 

over a range of aerodynamic conditions: 

(1) 

(2) 

(3) 

(4) 

(5) 

120 kn CAS, 1500 ft (figs. 51 and 52) 
150 kn CAS, 5000 L't (ligs. 53 - 55) 

200 kn CAS, 10000 ft (figs. 56 and 57) 

250 kn CAS, 15000 ft (figs. 58 and 59) 

320 kn CAS, 20000 ft (figs. 60 - 62). 
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Height error was less than the design requirement of 20 ft for all the velocity changes shown. A typical 

height error for 10 kn change in velocity was approximately 10 ft (fig. 53). The transient response in all 

cases exhibited no overshoot and reached 95% of final value by about 35 s. In all cases the engine 

response was smooth with no excessive or unnecessary throttle motions. Vertical accelerations peaked at 

0.lg for 10 kn changes in VCAS, except a t  condition (4) (250 kn CAS, 15000 ft) when the 'g' level reached 

0.15g. 

For all height changes shown, velocity error did not exceed the design requirement of 1 kn and was 

typically 0.5 kn. As with velocity changes, the transient response exhibited zero overshoot. 

In Section 2 is discussed one design feature of the integrated autopiloWautothrottle (i.e., the constant 

energy concept). In a constant energy maneuver (i.e., one in which the change in potential energy is 

matched by the change in kinetic energy) the system will use the elevator to retrim the energy in the 

system and the throttle activity will be negligible. This type of maneuver is demonstrated in Figure 55 

where the command inputs are + 10 kn change in velocity coupled with a -138-ft change in height. These 

command inputs were calculated to be energy equivalent at 150 kn. It can be seen that the elevator 

immediately responds a t  the start of the maneuver, whereas throttle activity is negligible. The throttle 

command (THCM) does show about 2" change over the maneuver, but owing to backlash in the system the 

throttle lever angle (TAUTO) does not respond with no change in EPR detectable. 

A similar energy equivalent maneuver was performed a t  20000 ft with a 10-kn change in speed 

corresponding to a -380-ft change in height. Again the change in throttle command is small (< 4") and 

the change in EPR and throttle lever angle negligible. 

The effects of large changes in command inputs are shown in Figures 63 and 64. Figure 63 shows the 

response to a 1000-ft change in altitude and demonstrates the action of two of the limiters in the system. 

These limiters are designed to limit the rate of climb and the acceleration levels experienced during large 

maneuvers. 

The reference to Figure 47 shows a limiter in the altitude command path. The system is designed such 

that a command for change in altitude generates a flight path angle error (yE 1 signal which is limited. 

The result is a height rate limit which varies as a function of velocity from approximately 1800 ftlmin at 

low speed (120 kn) to 6800 fWmin a t  cruise (310 kn EAS). 

In addition to this limit, other limiters exist on yE and V, in order to restrict acceleration commands to 

approximately 0.lg. However, during transients, the normal acceleration will exceed this 0. lg  level. 
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Figure 63 shows that during the 1000-ft altitude change, the height rate was limited to approximately 30 

ftls. During the initial phase of the maneuver the normal acceleration peaked a t  6 ftls2 but settled to 4.4 

W s 2 .  Capture of the new altitude was achieved with no overshoot and velocity error was insignificant 

(<lkn).  

The effect of a 20-kn step in CAS (fig. 64) shows negligible height error and smooth velocity captive. 

Transient peaks in normal acceleration exceeded 0.lg reaching 6 ftls2. However, future adjustment of 

limiters or gains could reduce this figure if necessary. 

The speed mode options available with the integrated autopiloWautothrottle are CAS, Mach or ground 

speed modes. The design and operation of these modes is described in paragraphs 7.1 and 7.2. 

Considering the CASIMach mode operation, a switch over between the modes was designed to occur 

automatically a t  preselected speeds. During ascent, the system will switch from CAS to Mach mode 

whereas during descent the system switches from Mach to CAS. 

Figure 65 shows the system operation: initially the airplane is commanded to descend a t  a flight path 

angle of -3" but holding Mach 0.7. CAS increases to the preselected switch point of 325 kn, then the 

system holds CAS constant while Mach decreases. An added feature of the altitude mode is the capability 

to preselect desired altitude. The system climbs or descends a t  the required flight path angle until the 

switching criterion is satisfied then engages altitude mode in a smooth transient free manner (fig. 66). 

9.3 FLIGHT PATH ANGLE, GLIDE SLOPE AND VERTICAL PATH MODES 

The response to a step change in Flight Path Angle (Ay = 3") is shown in Figure 67 (150 kn EAS, 5000 ft) 

and Figure 68 ( 310 kn EAS, 20000 ft). Captive was smooth with minimum change in throttle. However, 

normal acceleration peaked at 8 fus2 in the high speed example. 

The design of glide slope and vertical path following mode are described in detail in paragraph 7.3. The 

aim of the mode is to provide a smooth transient free captive of either the glide slope or some portion of 

the precalculated vertical path. The operation of both these modes is illustrated in Figures 69 and 70 

showing the desired transient response of y and height with low acceleration (AZCG) and negligible 

velocity error. 

9.4 NONLINEAR OPERATION DUE TO a OR ENGINE LIMITING 

The integrated autopilotlautothrottle system has been designed to prevent stall due to excessive a 

command and to prevent engine overboost due to large throttle commands. The design and 

implementation of these features is described in Section 6. Figure 71 shows the effect of commanding a 
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large flight path angle (y cmd - 10") when the maximum throttle angle has been limited to 40". In this 

case, the actual FPA settles at 5" and the elevator retrims to maintain velocity. Maximum velocity error 

was 1.6 kn in this limiting condition. 

The action of the limit is demonstrated in Figure 72a and b. In Figure 72a a 20-kt change in Ve is 

commanded causing the angle of attack (a) to reach in excess of 11". The FPA deviates by a maximum of 

ul)l~roxiiricil.c:ly 1 .2". 

The result of setting aref (Le., maximum allowable a) to 9" is shown in Figure 72b. FPA hold is 

maintained with approximately 1" error, but velocity is prevented from reaching the command input as a 

is limited a t  9". 

The integrated autopilotJautothrottle includes an EPR max mode. This option is designed as a safety 

mode to use as a "Go Around" feature. Engagement of EPR max mode causes the engine to deliver 

maximum thrust as quickly as possible. Velocity hold mode is still engaged, so the airplane climbs at 
maximum height rate with the limits on height rate and acceleration not applying. Figure 73 shows the 

EPR max mode in which the throttle ramps forward at maximum rate with EPR limits at the maximum 

safe value (2.25). Elevator activity is considered high and velocity error reaches 5 kn. However, this is a n  

emergency mode and these factors were acceptable. 

9.5 TURBULENCE AND WIND SHEAR 

The effect of wind shear and turbulence on this control law was investigated using the Harris simulator. 

The Velocity Control Loop employs a complementary filter to provide the derivative feedback signal (see 

paragraph 5.4). Simulation runs were made with horizontal turbulence (Dryden wind spectrum lfus 

rms) to examine the result of variation of the complementary filter bandwidth (0, = l/Tk). 

The standard deviation (SD) of several system states are shown plotted against 0, in Figures 74 and 77 

for two aerodynamic conditions: (1) H = 20000 ft, V = 310 kn, and (2) H = 1500 ft, V = 120 kn. 

It is apparent that  the SD of elevator (ose) in Figure 74 and throttle (oTHCM and oTAUTO) in Figure 75 

were very sensitive to variation in oK. An increase in aKcaused an increase in the SD. The SD in 
throttle command (oTHCM) was larger than oTAUTO (throttle lever angle) due to backlash. The SD of 

height was sensitive to variation in a K a t  high altitude and speed, but remained a t  2 ft k 10% at the low 

speed and altitude. Variation in velocity SD was small. In vertical turbulence (ag = 1 ft/s rms) the 

response was largely independent of variation in wK (Table 4) at both aerodynamic conditions. 
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The performance of the system was examined for horizontal wind shear (modelled as  a 1 k d s  ramp). 

Maximum velocity and height error were plotted for various valves of mKat the two aerodynamic 

conditions (high and low) previously described. Figures 78 shows that increasing the filter bandwidth OK 

( Le., increasing the bandwidth of the velocity loop) reduces the maximum velocity error. 

However this is achieved a t  the expense of height error which increases significantly with increase in 

bandwidth a t  high altitude (fig. 79). The effect was far less marked at low altitude and speed. An 

interesting comparison can be made between the wind shear and turbulence performance: Maximum 

error and SD of height increase with increasing filter bandwidth, whereas maximum velocity error vary 

significantly with filter bandwidth, with thc SD of velocity insensitive at high altitudc and only 

decreased slightly at low altitude. 

The linear results plotting SD of throttle against maximum velocity error V for varying filter bandwidth 

(paragraph 5.4) shows that a trade-off is possible between throttle activity and velocity error wind shear. 

Figure 80 shows that throttle lever angle (TAUTO) activity was lower both at high and low speed than 

the linear predictions. However, the throttle command signal was approximately 75% higher than the 

linear prediction. To take advantage of the ability to trade off throttle activity in turbulence against 

maximum velocity error in wind shear, the system time constant (TK) has been programmed to vary a s  a 

function of altitude. Thus low altitude (1000 ft and below) TK = 4, thereby reducing the velocity error 

due to wind shear. At higher altitude the effect of wind shear is not critical and it is desirable to minimize 

throttle activity. Therefore above 2500 f t  T, is fixed a t  20. Between 1000 to 2500 ft, TKvaries in a linear 

manner with altitude. Details of the implementation are given in Figure 47. 

The turbulence and wind shear results did not show a significant difference when either \i, or the 

Oderived signal was  implemented on the Harris simulator. Further efforts in modelling the 

instrumentation required to determine thrust and current weight are needed before an accurate 

evaluation of the two methods can be made. 
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1. 

10.0 CONCLUSIONS 

The integrated autopilot/autothrottle was designed to give: 

2. 

3. 

4. 

7. 

8. 

(a) Fuel efficiency by employing the total energy control concept and minimizing throttle 

activity. 

I,ow dcvclopmcnt, implcmcntation and ccrtification costs hy designing thc system around 

a fixed inner loop configuration. 

Maximum safety by preventing stall and preventing engine overboost. 

(h) 

(c) 

The original design constraints have been satisfied during normal operation (e.g., maximum 

velocity error during altitude maneuvers was less than 1 kn and maximum height error during 

velocity changes was less than 20 ft  over the full aerodynamic range). 

Wind shear performance was improved to satisfy the design requirement of 5 kn maximum error 

with the addition of a complementary inertiallair mass referenced acceleration. However, this 

improvement was achieved at the expense of throttle activity. 

Variation of the complementary filter time constant, enabling the system to be optimized for 

wind shear criterion, was satisfied during approach and landing, but throttle activity was 

minimized during cruise. 

The use of a 2D wind shear detector did not improve wind shear performance when compared 

with the preferred system. 

Several inner loop designs were evaluated. Of these designs, linear analysis showed the 

optimum was an fi/O/i, complementary inner loop in terms of decoupling in altitude and speed, 

low elevator activity, and best path velocity tracking in turbulence. 

A feedback inner loop was selected in an attempt to provide a simple method of limiting. 

However, this method was not satisfactory for limiting, and stall prevention was incorporated by 

an additional outer loop control. 

Future work should consider reimplementing the hIW9 inner loop. 
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9. An engine controller was designed to satisfy the thrust response requirements of the 

autothrottle functions. Overboost of the engine was prevented by limiting the EPR command 

signal. In addition, the engine controller has an EPR,, mode designed as an emergency ‘Go 

Around‘ feature. 

10. Additional modes have been added to control ground speed (Le., Mach or CAS) and capture the 

glide slope or follow a preprogrammed vertical path. 

I 11. A mode control panel was designed to enable mode selection by the pilot. Consideration was 

I given to the software design necessary to control arming, engagement and switching between 

the various modes. 

12. The overall system concept and performance were evaluated using a more complex nonlinear 

simulation implemented on the Harris airplane simulator. 

13. The Harris simulator confirmed the results achieved by linear design. 

14. Future work should compare the design concept and results of this conventional design with 

results obtained by solving optimal control problem using a suitable cost function. This 

approach may yield further insight into minimizing the effect of wind shear and turbulence. 
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APPENDIX A. TWO-DIMENSIONAL WIND SHEAR DETECTOR 

The basis of the wind shear detector is to calculate a new thrust level to compensate for accelerations due 

to the wind shear. 

It can be shown that the vertical wind is: 

VW, = -h + V, tan 0 - V, tan a cos $I 

where h = inertial altitude rate 

V, = trueairspeed 

8 = pitchaltitude 

X = true angle of attack 

9 = rollaltitude 

In addition it can be shown that the change in flight path angle due to vertical wind, assuming constant 

speed and power setting is: 

AYW, = -vw,/v, (A.2) 

Hence A ~ W ,  = yI + tan 8 - tan a cos q) (A.3) 

or for small angles: 

AYW, = YI + 0 - a  

The thrust required to compensate for such a change in flight path angle is: 

ATwv = WAyw, 

(A.4) 

(A.5) 

Where W = Weight (lbs) 

Equation 4 is implemented by measuring longitudinal acceleration (a ) using a body mounted 

accelerometer , where: 

ax = VI + ge (14.6) 

where V, = velocity rate (inertial) 
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Figure A . l  shows that a lagged 8 ( 8 1 can be derived by integrating the accelerometer measurement, 

feeding back VTAS, and high pass filtering the resultant signal. This concept is used in Figure A.2 to 

obtain the AyW,signal. This signal (AyW,) is rate limited to filter the high frequency turbulence. 

Finally the signal input to the throttle was divided by the throttle-to-thrust gain to get the command in 

terms of degrees of throttle. 

It should be noted that the computation of ATw is dependent on the accuracy of the angle of attack signal 

and that accurate determination of a has not been fully investigated. 
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APPENDIX B. DERIVATION OF h le SYSTEM 

Pitch rate may be expressed as: 

6 ,  & in rad/sec 

Substitute for the state equation from the aircraft equation of motion: 

a = (-.3133)U - (.6543) 0: + (l.)q - (.000723)6, - (.108~10.')6, 

(B.1) 

Considering small perturbations only from an initial steady state condit,ion, constant thrust, no 

horizontal or vertical turbulence, and the elimination of a with = 8 - h, the equation reduces to: 1 '  

VG 

1 .. 1 .  

e = - h -  33.13U - .6543 (8-  I h) + 1.Oq - .0007238, 
VG VG 

(B.3) 

With 6 = q, the equation can be solved for 8 as follows: 

0 = .4319h + .2827 h - .0636, - .1354V (€3.4) 

Where V = V,,U, 8 is in degrees, fi is in ftJsec2, 6, is in degrees and both h and V are in ft/sec. 

From Figure 18, the equation for the elevator command is: 
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Substitution of equation 4 in equation 5 results in: 

.4319h - .135V + .283h - .0636, + g/VGi 

-I 

.75 
-Vng + s [ -.1 VTAS - Veng - g/V,(-.lh-h) 

The elevator position is related to 6ec by the elevator servo transfer function: 

' ec  

.05S + 1 
'ec = 

Substition of equation 6 into equation 7 and solving for yields: 

ec = .655 [ 4q + 8 {.4319h - .135V + .283h + g/VGh 
.033S + 1 - -  

(B.6) 

03.7) 

(B.8) 

This equation represents an be control law that has nearly the same stability characteristics as the 

original system. For implementation of this system, the .03 sec lag must be replaced with the actual 0.5 

sec elevator servo transfer function. This would have a very small effect on the aircraft dynamics. 
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